Role of the	laboratory in ITI
	Magdaléna Jelínková Department of Paediatric Haematology University Hospital Brno Czech Republic

Coagulation laboratory

- Basic equipment
 - centrifuge (generating at least 1500 g, better 2500 g)
 - coagulometer (fully automated, semi-automated)
 - optical
 - mechanical
 - regulated water bath (capable of maintaining temperatures of 37 \pm 0.5 $^{\circ}$ C)
 - refrigerator for reagent storage (+2 to +8 ° C)
 - deep freezer (able to maintain at least -25 ° C, better -70 ° C)
 - calibrated automatic pipettes
 - stopwatch(es)
- Specialized staff (lab technicians)

Sample collection

- 0.109M (3,2 %) or 0.129M (3.8%) sodium citrate anticoagulant (1 part of anticoagulant : 9 parts of blood) ee for Clinical Laboratory Standards (NCCLS)
- Sample volume nominal value \pm 10 %
- When sampling, use the "second tube" for coagulation!
- First circa 2 ml of drawn blood should not be used for tests of haemostasis

Sample collection

 Haematocrit > 0.60 and < 0.25 → the volume of anticoagulant is specifically calculated from the formula:

$$V (ml) \underline{citrate} = \frac{100 - haematocrit(\%)}{595 - haematocrit(\%)} \ xV(ml)blood$$

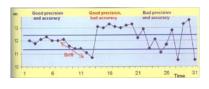
Transport of the sample

- Up to 2 hours at room temperature +15 to +25 ° C for whole blood samples
- Frozen plasma samples at -20 ° C and below can be stored/transported much longer

Pre-analytical variables

- Centrifugation
 - PPP (platelet-poor-plasma) at minimum 1500 g for at least 10 min at room temperature +15 to +25 ° C
 - Cold activates FVII and system of kalikreins
 - Refrigerated centrifuge (< +15 ° C) specific samples only (e.g.anti Xa, PAI,...)
 - Some test procedures require the plasma to be centrifuged twice (e.g. LA)
- Testing of the sample
 - Samples should be tested within 4 hours of sample collection when possible (it depends on the test procedure – e.g. aPTT within 2 hours, samples with heparin within 1 hour)

Pre-analytical variables



- Deep-frozen plasma samples
 - Better to freeze plasma at -196 ° C ("shock-freezing" in liquid nitrogen)
 - Storage at -70 ° C or lower is preferred (some clotting factors can be then tested even after 6 months of storage)
 - Storage at -20 ° C (max 1 month)
 - $-\,$ Thawing for 5-10 min at +37 $^{\circ}\,$ C , then mix by reversing the tube gently

Quality Control

- · Internal quality control (IQC)
- Intermediate precision (results ± 2 SD, mean, CV,...)
 - Reproducibility
 - Commercial QC with target range of acceptable values
 - Quality control between instruments

Quality Control

- External quality assessment (EQA)
 - Is used to identify the degree of agreement between one laboratory's results and those obtained by other centres
- ISO (certification, accreditation of the laboratory)

N	arma	rof.	0 F 0 F	-	ron.	~
IV.	orma	rei	eren	Ce	Ian	ЧE

- Respect age, sex, ABO group! (F VIII, vWF)
- Follow national/international recommendation
- Check the literature ©
- Respect manufacturer`s information/recommendation
- You may also rely on your own laboratory reference range (healthy normal subjects - reference range should include the central 95 % of values)

Activated partial thromboplastin time (aPTT)

- Screening aPTT reagent:
- sensitive to defect of factors
- sesitive to heparin (UFH)
- sensitive to LA
- aPTT reagent for determination of factors, inhibitors:
 - non-sensitive to LA
 - · sensitive to defects of factors

Carefully select your aPTT reagent!

aPTT

- Calibration
 - aPTT time for "normal plasma" in seconds (mean of repeated measurements)
 - calibrator = "normal plasma"
 (pooled normal plasma (PNP) or commercially provided normal plasma)
- Results
 - time (seconds)
 - Ratio (R)

 $R = (t_{pac}/t_{norm})$

aPTT

· Normal reference range

Age	aPTT - R
0 – 1 m	0,8 - 1,5
1 m – 1 y	0,8 - 1,3
> 1 y	0,8 - 1,2

- Time in seconds is significantly dependent on reagent and instrument used!
- · Clinical relevance
 - Hypo coagulation (prolonged coagulation time)
 - Hyper coagulation is not relevantly mirrored in aPTT!
 - shortened aPTT times low sensitivity no clinical relevance (except sampling errors)

aPTT

- Prolonged aPTT:
- Defect of factors: VIII, IX, XI, XII, PK, HMWK
- Defect of factors V, X, II (the common pathway, PT longer too)
- VWD
- Dys- or afibrinogenemia
- Presence of inhibitors (specific, non-specific)
- Presence of heparin (UFH)
- Presence of FDP
- Physiologically newborns (R = 0.8 1.6)
 - children up to age 1 year (R = 0.8 1.3)
- Sampling errors

Correction (mixture) tests

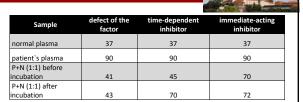
- For further investigation of abnormal aPTT (when PT is normal) or PT (when aPTT is normal)
- N (normal plasma)P (patient's plasma)M (mix = N+P (1+1))
- · Determination of aPTT/PT


Correction (mixture) tests

- Is the defect in patient's plasma corrected adding normal plasma?
 - YES → aPTT /PT correction of more than 50 % → factor deficiency is very likely
 - poor correction or no correction → inhibitor to one of the clotting factors (specific inhibitor) or non-specific inhibitor (e.g. LA) → circulating anticoagulant

Correction (mixture) tests

normal PT



Circulating anticoagulant

- Identification of time-dependent / time-independent inhibitor
- · Specific inhibitor (against coagulation factor)
- · Assays based on aPTT/PT
- Tubes: N, P, 4N+1P, 1N+1P, 1N+4P
- · Determination of aPTT/PT
- Incubation for 2 hours at 37 ° C
- · Determination of aPTT/PT

Circulating anticoagulant

Time (s)

Incubation for 2 hours at +37 $^{\circ}$ C

Circulating anticoagulant

Sample	defect of the factor	time-dependent inhibitor	immediate-acting inhibitor
normal plasma	37	37	37
patient's plasma	90	90	90
P+N (1:1) before			
incubation	41	4 5	70
P+N (1:1) after			
incubation	43	70	72

Time (s)

Incubation for 2 hours at +37 ° C

Circulating anticoagulant

· Calculate:

4N+1P: 4 x time (N) + 1 x time (P) / 5 1P+1N: 1 x time (P) + 1 x time (N) / 2 1N+4P: 1 x time (N) + 4 x time (P) / 5

time.....time of aPTT (PT) in seconds

Identification of inhibitor:

Addition of 1/5 pacient's plasma to 4/5 of normal plasma causes markedly prolonged time of normal plasma sample.

F VIII (one-stage assay)

- Activity of the F VIII is determined by modified aPTT test using correction of aPTT in FVIII-deficient plasma by FVIII present in patient's plasma
- · FVIII-deficient plasma
 - available commercially
 - very low or undetectable level of the FVIII (FVIII < 1 %)
 - high activity of all other factors
 - no anti-FVIII antibodies

F VIII (one-stage assay)

- · Measurement of the FVIII:
 - 1 part of diluted patient's plasma (1:10 with buffer OVB)
 - 1 part of FVIII deficient plasma
 - 1 part of aPTT reagent, incubation
 - 1 part of CaCl₂
- Determination of aPTT(in seconds)
- Derive % FVIII from the calibration curve

F VIII - calibration

- Calibrator (calibrated against WHO standard, when possible) with defined factor activity
- The calibration curve (min. 4 dilutions) double logarithmic plot

	rd Curve ♥ urrent 27/ 9/11	Validated	Log-Log Pt-Pt	T [sec
VIII X 182.0 X 136.5 X 91.0 X 45.5 X 11.4 X 2.8 X	51.9 sec 54.7 sec 59.1 sec 66.3 sec 85.2 sec 104.3 sec	91.0 X 45.5 X 11.4 X		90 90 90 70 60 50
Name VIII APTT FS CaC12 UVB	Lot # 546539 538407	Exp.Date 21/ 3/13 26/ 7/12 8/ 6/16	P [1] Expression	100 200 400 LogP = 8 × LogT + 1

F VIII:C

- · Note!
 - Not all combinations of deficiency plasma and aPTT reagent work equally well!
- · Significant role
 - Quality of the deficient plasma
 - The sensitivity of the aPTT reagent to factor deficiency
- FIX
 - The same procedure but with F IX deficient plasma

F VIII:C - test for low levels

- FVIII < 10 % (with standard dilution of the sample 1:10)
 use lower dilution 1:5 (or 1:2,...) depending on the instrument and the calibration curve used
- FVIII low-calibration curve used (e.g. < 10 %)

9.1 1 4.5 1 2.0 1 1.1 1 0.3 1 0.1 1	59.9 se 67.8 se 76.0 se 85.5 se 105.9 se 123.1 se	4.6 X c 2.3 X c 1.1 X c 0.3 X c 0.1 X		120 100 90 80 70 60
Name VIII APTT FS CaG12 OVB	Lot # 54(\$)9 538407	Exp.Date 21/ 3/13 26/ 7/12 8/ 6/16	P [X] Expression LogP	10 20 - a × LogT +

F VIII:C – test for low levels

- FVIII low calibration curve (e.g. < 10 %)
 - Dilution of the standard plasma with the FVIII deficient plasma (recommended for optical coagulometers)
- Quality control
 - Commercial lyophilized human plasmas with defined factor activity (2 levels: N and P)

Normal reference range

Age	FVIII (%)	FIX (%)
0 - 1d	60 – 140	20 – 75
1d – 1m	60 – 125	65 – 110
1m – 1y	55 – 100	50 – 125
1y – 6y	75 – 150	50 – 110
6y – 18y	50 – 150	60 – 150
> 18y	50 – 150	50 – 150

(Reccomendation of the Czech Haematology Society, 2013)

Defects of F VIII

- Congenital
 - Hemophilia A
- Acquired
 - Due to acquired inhibitors (antibodies)

Chromogenic F VIII assay

- More than 20 % of mild hemophilia A patients show discrepancy between activity of F VIII determined by one -stage assay and chromogenic assay

Quantitative measurement of FVIII inhibitors

- · Time-dependent inhibitors
- · Show linear inhibition kinetics (type I)
- The presence of an inhibitor might be suspected from a reduced half-life and recovery of FVIII
- · Bethesda (BA), Nijmegen, Oxford assay

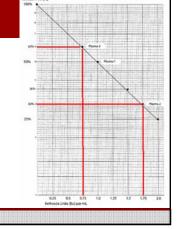
Quantitative measurement of FVIII inhibitors

One **Bethesda unit** (BU) is defined as the amount of an inhibitor that will neutralize 50 % of FVIII present in normal plasma after 2 hours of incubation at +37 ° C.

Quantitative measurement of FVIII inhibitors (BA)

- Different dilutions of the plasma **sample** with imidazole buffer (1:2,1:4,1:8,1:16,...1:256)
 - in case of strong inhibitor, use more titres (1:512, 1:1024,...)
- FVIII inhibitor positive controls (QC)
- Control mixture (imidazole buffer)
- Mix the sample with the equal part of **normal plasma** (pooled plasma)
- Incubation for 2 hours at +37° C
- Inhibitors inactivate FVIII present in the normal plasma

Quantitative measurement of FVIII inhibitors (BA)



- After incubation at +37 ° C the activity of the FVIII in patients' samples and control mixtures is determined
- Calculate residual activity of the factor (%):

$$residual_activity = \frac{activity_of_the_factor_in_the_sample}{activity_of_the_factor_in_control_mixture} x100$$

- · Calculate separately for patient's samples and positive controls
- Dilution of the patient's plasma that gives a **residual FVIII nearest** to 50 % but within the range 30 60 % (event. 25-70 %) is chosen for calculation of the inhibitor

 The inhibitor activity is calculated from a graph of residual FVIII activity versus inhibitor units (BU)

• Derive the inhibitor titre from the graph and **multiply by the dilution** to give the final titre

Quantitative measurement of FVIII inhibitors

- · Normal values:
 - < 0,6 BU/ml
- Inhibitor:
 - < 5 BU/ml Low responder
 - > 5 BU/ml High responder

The Nijmegen modification

- Use <u>buffering</u> the normal plasma with 0.1M imidazole buffer at nH 7.4
- Use <u>imunodepleted FVIII deficient plasma</u> in the control mixture and for dilution of the patient samples

Advantage:

- Is better at low inhibitor titres (<1 BU) than classical Bethesda assay (Bethesda assay can result in false positivity)
- ISTH recommendation (at least for CCC)

The Oxford modification

- Use a **concentrate of the FVIII** instead of normal plasma
- Use 4 hours incubation at +37 ° C
- · Not often used these days...

Quantitative measurement of FVIII inhibitors

- · Potential problems (troubleshooting)
 - Determination of the inhibitor during IT treatment interference
 of the residual FVIII in the sample false low titre of the
 inhibitor or negativity of the inhibitor
- · Possible resolution
 - Heat the test plasma at +58 ° C for 90 min (will destroy all the clotting factors including FVIII, but not the inhibitor – it is heat resistant)

FVIII inhibitors • Type of the inhibitors (type I and III) depends on the kinetics of the inhibitor The profit for inhibitor The profit for indicates the difference between Type I and Type II inhibitor The profit for inhibitor The profit for indicates the difference between Type I and Type II inhibitor Type II inhibitor

Recovery and half-life

- · The sampling points:
- 0 (baseline), 0.25, 0.5, 1, 3, 6, 9, 12, 24, 28, 32, 48, 72 h
 - at lest 5 time-points: patient ≤ 6 years old
- ISTH recommendation

Recovery and half-life

- Recovery
 - Ratio of desired and real increase of FVIII/FIX (IU/dI) in patient's plasma after the dose of injected factor (in IU/kg)
 - Given in percentage
 - 1 IU/kg of FVIII should increase the plasma level in 2 %, for FIX in 1 %
 - Is often calculated from the highest measured FVIII/FIX plasma concentration of FVIII/FIX within the first hour post infusion
 - Recovery shall be **more than 66 %** (hemophilia A)

Recovery and half-life

- · Half-life
 - The period of time required for the concentration or amount of drug in the body to be reduced to exactly one-half of a given concentration or amount
 - Half-life greater than 7 hours (hemophilia A)

