

Risk factors of inhibitor development

Petr Smejkal, MD, PhD

Dept. of Clinical Haematology Centre for Thrombosis and Haemostasis University Hospital Brno Czech Republic

Content

- Why is inhibitor the worst complication of haemophilia treatment?
- · Epidemiology
- · Risk factors
 - Genetic
 - Treatment related
- EHTSB consensus report recommendations

Management of bleeds in high titre inhibitors: only with bypassing agents

- Less effective for treatment of bleeding compared with FVIII in non-inhibitor patients
- Expensive
- · Increased mortality rates:
 - is 2.9-fold higher than general population
 - for severe haemophiliacs is 1.3-fold higher

* Knight C. Haemophilia 2003: 521-540,

Bypassing	g agents:
treatment	monitoring

The treatment with bypassing agents:

- · It is not only substitution
- · We have no standardized tests for monitoring yet:
 - Thrombin generation assay:
 - · High interlaboratory variation
 - Depends on amount of added TF and phospholipids
 - · Assay is preferred in PRP
 - Thromboelastography:
 - \cdot High variability between subjects, within the same subject

Bypassing agents: Dosing regimes

Wide range of doses:

- ${\boldsymbol{\cdot}}$ Defined in accord to manufacturer's and literature recommendations and clinical efficacy
- · According to the clinical status

- · 50-100 IU/kg á 6-12 h
- · Limitation: maximum 200 IU/kg per day

· 90-270 μg/kg á 2-3 (6) h

Not always successful: efficacy of aPCC in treatment of bleeding

- · Bleeding episodes controled in:
- *Hilgartner M. Blood 1983: 36-40, Transfusion 1990: 626-30,
- · Efficacy was judged as good or excellent in:
 - 81%
 - Including surgery
- *Negrier C, Thromb Haemost 1997: 1113-19,
- Home treatment only
 *Negrier C. Haemophilia 1998: 238 (abst. 330). · Cessation of bleeding with single dose reported in:
 - 95% (85 IU / kg) (FENOC study) *Berntorp E. Blood 2006: 546-51.
 - 64% (75 IU / kg)
- * Young G. Haemophilia 2008: 287-84,

Not always successful: efficacy of rFVIIa in treatment of bleeding

Cessation of bleeding:

- 92%, but with recurrence in 5%
- 84-85% (< 100 μg/kg 200 μg/kg)
- 97% (>200 μg/kg)
- 93% (FENOC study)
- · Single mega-dose:
 - 83%, but 10% with recurrence
 - 90.5%
 - 92%

*Kev N. Thromb Haemost 1998: 912-18.

*Laurian Y, Blood Coagul Fibrinolysis 1998: 155-6,

*Berntorp E. Blood 2006: 546-51,

*Kenet G. Thromb Haemost 2003: 450-55.

*Kavakli K, Thromb Haemost 2006: 600-5.

*Young G. Haemophilia 2008: 287-294,

Expensive: Cost calculated for treatment on demand

- rFVIIa: 0.70 € / μg
- aPCC: 1.12 € / IU
- · 353 794 € / year

 - 75 kg 12.5 bleeds / year

 - 55% HR
 - 50% rFVIIa
 - 50% aPCC

*Auerswald G. Haemophilia 2004: 10:499-508.

Expensive: Treatment on demand · - retrospective expenditures

- France 1998:

 56 000 € / year (LR)

 278 000 € / year (HR)

 Included surgery, without ITT
 - · > 23 years

*Goudemand J. Haemophilia 1999: 387-401,

Italy 2001:

- 216 000 € / year (HR)
 - Included surgery, without ITTMean age 36 years, > 14 years

*Gringeri A. Blood 2003: 2358-63,

USA 1998:

- 141 000 \$ / year (4 LR, 3 HR, 5 about 5 BU/ml)
 - * $8 \le 14$ years, 4 > 14 years

*Bohn RL. Haemophilia 2004: 63-68.

Evident reasons for inhibitor minimization

- · Prevetion and prediction of inhibitor risk
- · Immune tolerance induction

Inhibitor - prevalence

Unselected haemophiliac population 5 - 7%

Severe haemophilia A (GB, France) 12 - 13%

*Wight J. Haemophilia 2003: 418-435,

Mild and moderate haemophilia A

3 - 13% *Peerlinck K. Haemophilia 2006 (Suppl. 6): 43-7.

Total haemophilia A population

3.6 - 21%

*DiMichele D. In: Textbook of Hemophilia, Blackwell Publishing 2005: 64-70, Haemophilia B 1.5 - 3%

Severe type 3-4%

*Tandra A. In: Textbook of Hemophilia, Blackwell Publishing 2010: 97-1003

Inhibitor - incidence

Severe haemophilia A: 20 - 30% (3.6 - 52%) *Astermark J. Semin Hematol 2006 (Suppl.4): 3-7.

n FVIII <2% inhibitor total (%) inhibitor inhibitor products > 10 BU / ml > 5 BU / mI Lusher 03 ReFacto 101 32 Gruppo 98 Recombinate 72 32 11 13 Lusher 04 64 38 16 23 Kogenate Lusher 91 Monoclonate 25 24 16 20

44 Ehrenforth 92 27 mainly pd Addiego 93 low.pur.+CP 89 28 21 24 de Biasi 94 17 19

52

*Lusher JM. In: Textbook of Hemophilia, Blackwell Publishing 2005: 34-38.

41

г	•				•					П	1	٠.						
8	٧.	v /	_	_		_	•	•	•	п	_	π	_	•	_	_	_	ч.

- PUP and severe haemophilia A:
 - median 12 ED (9 36), till 40-50 ED median age 2 years (1,7 3,3)

<u>haemophilia B:</u>

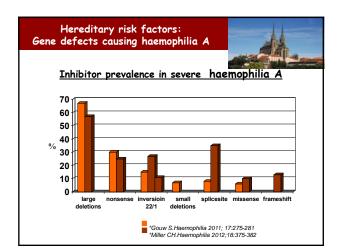
- □ 11 ED
- □ 19.5 months
- · PTP studies and severe haemophilia A:
 - pdFVIII (n=1306):
 - risk after 150 250 ED: 0,6%
 - <u>rFVIII</u> (n=307):
 - risk: 1,6% (high responder 0,3%)

*DiMichele D. In:Textbook of Hemophilia, Blackwell Publishing 2005: 64-70.

Factors influencing development of FVIII inhibitors

Hereditary risk factors:

- Gene defects causing haemophilia
- Immunologic response characteristics
- · Family history of inhibitors
- · Ethnicity


Treatment-related factors:

- FVIII product type:
 - pd versus recombinant
 - Switching between FVIII
 - products
- Content of vWF
- Age at first FVIII exposure
 - Intensity of treatment
- Mode of administration (bolus, CI)
- Immunologic costimulation
 - Breastfeeding
 - Antenatal FVIII exposure
 - Infection and vaccination
 - Bleeding and surgery

Hereditary risk factors: Gene defects causing haemophilia A Inhibitor prevalence in severe haemophilia A 90 80 70 60 % 50 40 30 20 Oldenburg J. Haemophilia 2006 (Suppl. 6): 15-22

_				
-				
-				
-				
-				
-				
-				

Hereditary risk factors: Mutation profile in severe haemophiliacs A (Germany)	
nonsense splice site splice site small del.+inv. inv. Intron 1	inv. Intron 22
17-41% risk ofinhibitor in more than 80% of sev 88% risk with multidomain deletion 3-10% risk with missense mutation and A-run sm **Oldenburg J. Haemophilia 2**	nall deletions

Hereditary risk factors: Non-severe haemophilia A - Arg593cys: - 10-fold increased risk of inhibitor *Eckhardt CL. J Thromb Haemost 2009.7: 930-7 - 20% (5/25) *Mauser-Bunschoten EP. Haemophilia 2012:18:263-267. - C1/C2 domain missence mutation: - 8,7% vs. 3,6% non-C1/C2 - Substitution of amino acid of different physical-chemical class - 5,8% vs. 1,8% *Schwaab R. Thromb Haemost 2013:109: 464-470.

Hereditary risk factors: Gene defects causing haemophilia B

- · Large deletions:
 - $\frac{1}{2}$ of patients with inhibitor
 - only 1-3% of haemophilia B population

*Warrier I, In: Textbook of Hemophilia, Blackwell Publishing 2005: 97-100.

- · Nonsense mutations:
 - Inhibitor prevalence is only 6% (in HA is 30%)

 **Oldenburg J. Haemophilia 2006 (Suppl. 6): 15-22.

Prevalence of FIX inhibitors is lower than in HA:

- · More patients have low risk mutations
- · Similarity with other vitamin K dependent factors

Hereditary risk factors: Immunologic response characteristics HLA alleles: Relative risk • A3, B7, C7, DQA0102, DQB0602, DR15 2-4 · C2, DQA0103, DQB0603, DR13 0.1-0.2 • Microsatellite polymorphism in promotor (allele 134)

$\mathsf{TNF}\text{-}\alpha\text{:}$

- Polymorphism in promotor -G 308 A
- For severe haemophilia A with genotype AA 19.2
 - *Oldenburg J. Haemophilia 2006 (Suppl. 6): 15-22,

CTLA-4:

- Polymorphism -C 318 T
- Protective down regulatory effect

*Astermark jJ Haemophilia 2012;18(Suppl.,4): 38-42

Hereditary risk factors: Immunologic response characteristics *Astenmark J. Haemophilia 2006; 12 (Suppl. 3): 52-60. Exogenous FVIII B7.1/7.2 (CD80/86) CTLA-4 - 4 MHC Class II 4a T_H cell CD40L CK-R CD40 Release of cytokines e.g. IL-2, IL-4, IL-5 IL-10, IL-12, IFN-y B cell FVIII antibodies B7.1/7.2 (CD80/86)

Hereditar	y risk facto	rs:
Immunologi	c response c	:haracteristics

Fig. 2. Schematic model showing the principles of inhibitor formation in patients with haemophilia A. Exogenous infused factor mation in patients with haemophilia A. Exogenous infused factor VIII (FVIII) binds to the antigen-presenting cells (APC) (Step 1). After endocytosis, oligopeptides will be formed by proteolytic cleavage (Step 2). These peptides bind to the major histocompatibility complex (MHC) class II molecules having the correct recognition sequence. The MHC–FVIII peptide complexes are then transferred to the cell membrane and presented to the T-cell receptors (TCR) on the CD4+ T_{IP-I}ymphocytes (Step 3). Co-stimulation of the control of t ulatory signals have to be provided by the binding of B7.1 (CD 80) and B7.2 (CD86) to CD28 (Step 4a) to fully activate the $T_{\rm H^2}$ lymphocytes and to stimulate the release of cytokines (Step 5). The subsequent binding of these cytokines to the corresponding receptors (CK-R) up-regulates immune response genes and co-stimulatory molecules on the cell surfaces of both B- and T-cells (Step 6). The enhanced action of cytokines and co-stimulatory molecules, including the interaction between CD40 and CD40L, induces B-cell proliferation, differentiation and FVIII antibody production (Step 7). The activation of the T_H-cells is down-regulated by the competitive binding of cytotoxic T-lymphocyte antigen 4 (CTLA4) to the B7 molecules on the APC (Step 4b).

*Astenmark J. Haemophilia 2006; 12 (Suppl. 3): 52-60.

Hereditary risk factors: Ethnicity

African origin versus Caucasians

51,9% vs 25,8%

2 x ↑ risk

*Scharrer I, Haemophilia 1999: 145-54,

- 2.4 x ↑ risk (Afro-Americans and Hispanics)
 - Gouw SC.J Thromb Haemost 2007: 1383-90
- * 3.6 x \uparrow risk in patients with FVIII H3, H4 haplotype
- FVIII H3 haplotype is not independent predictor of inhibitor risk

*Schwarz J. Haemophilia 2013:19:113-119

At least six wild-type FVIII haplotypes:

- H1 and H2 have been occurred in all racial groups
- H3,4,5 found only in black peopleH5 found only in Chinese

*Kruse-Jarres R. Haemophilia 2013; 19 (Suppl.1):2-7

Hereditary risk factors: Family history of inhibitors

Family history of FVIII inhibitors:

- 3.2 \times \uparrow risk for brother
- *Astermark J. Haematologica 2005: 924-31,
- · 3 x ↑ risk with positive family history
 - *Gauw SC Blood 2007: 4648-54
- · 50% risk for brother versus 9% in extended relatives

Treatment-related factors: product type FVIII plasma-derived versus recombinant

- · Immunomodulatory activities:

 - Antigenic competition:

 Antibodies against other proteins than FVIII

 Various cytokines expression:
 - - pdFVIII higher levels of IL-4, IL-5, TGF-β: Th2 response
 rFVIII higher levels of IL-2, IL-10, IF-y- Th1 response
 **Kruse-Jarres R. Hoemophilia 2013, 19 (Suppl.1)-2-7
- Presence of von Willebrand factor:
 - VWF binds to C2 domain of FVIII, which contains:
 - · Frequently binding site for inhibitor
 - · Binding site for phospholipids
 - r-FVIII » ↑ phospholipids affinity:
 - » Correlates with \spadesuit risk of FVIII inhibitor

- Blocks uptake of FVIII by:

 - Antigen-presenting cells
 *Lacroix-Desmazes S. XXIst ISTH Congress 2007, * Kruse-Jarres R. Haemophilia 2013: 19 (Suppl.1):2-7

Treatment-related factors: Pivotal studies with r-FVIII in PUPs, FVIII < 2%

r-FVIII product	Observation	Inhibi	HR	
1-F VIII product	median ED	No	%	%
Recombinate	11	17/71	23.9	11.3
Recombinate	NK	NK	30.1	NK
Kogenate	126	19/65	29.2	15.7 Any severity
Kogenate Bayer	114	9/60	15	10
Refacto	197	32/101	31.7	15.9

*Peerlinck K. Haemophila 2006: 579-90.

Treatment-related factors: Post-marketing studies with r-FVIII in PUPs

r-FVIII product	FVIII	ED	Inhib	HR	
1-F VIII product	FVIII	median	No	%	%
Recombinate	< 1%	64	14/50	28	12
Kogenate	any severity	NK	15/43	34.9	14
Refacto	any severity	NK	3/16	18.8	12.5

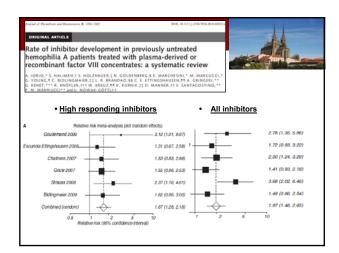
*Peerlinck K. Haemophila 2006: 579-90.

Treatment-related factors: Pivotal studies with r-FVIII in PTPs

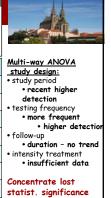
r-FVIII product	FVIII	ED median	Inhib No	oitor %	HR %
Recombinate	< 5%	184	2/69	2.9	1.4
Kogenate	any severity 93% < 2%	NK 226	2/86 2/58	2.3 1.7	2.3 NK
Kogenate Bayer	< 1%	NK	1/71	1.4	0
Refacto	< 2%	≥ 30	1/113	0.9	0.9
Advate	< 2%	117	1/117	0.9	0

*Peerlinck K. Haemophila 2006: 579-90.

Treatment-related factors: Post-marketing studies with r-FVIII in PTPs


r-FVIII product	FVIII	ED Inhibitor		oitor	HR
· · · · · · · · p. · · · · · · ·		median	N	%	%
Recombinate	any severity	NK	0.06% / year		NK
Kogenate	any severity	NK	10/304	3.3	NK
Refacto	any severity any severity	NK NK	3/172 1/91	1.7 1.1	1.1 1.1

*Peerlinck K. Haemophila 2006: 579-90.


Treatment-related factors: Studies comparing inhibitor incidence in severe haemophilia PUPs

•	pd-FVIII				r-FVIII		
	_	FVIII inhibitor		NI-	FVIII inhibitor		difference
	n	all	HR No		all	HR	
*Goudemand J. Blood 2006: 46-51	62	11%	5%	86	31%	15%	RR=2.4 (HR 2.6)
*Escuriola-Ettinghausen C. Haemophilia 2006 (S6): 102-6	57	21%	NK	47	36%	NK	P=0.08
*Chalmers EA. Haemophilia 2007: 149-55	132	14%	10%	172	27%	15%	P=0.009 (HR=NS)
*Gouw SC. Blood 2007: 4693- 97.	135	21.5%	17%	181	29%	24%	RR=0.8 (HR 0.9)
*Knobe KE. Acta Paediatr 2003: 17-20	52	17%	NK	48	21%	NK	NS Prophyl.
*lorio A. J Thromb Haemost 2010; 8: 1256-65	1167 any severity	14.3%	9.3%	927	27.4%	17.4%	RR = 2 (HR = 1,7)

10

ORIGINAL ARTICLE							
Rate of inhibitor development in previously untreated hemophilia A patients treated with plasma-derived or recombinant factor VIII concentrates: a systematic review A - IONIO-15 - HALLMENT'S MOLTHAURE, IN GOLDTHEER'S E MARCHENIX MARCOCCI. A - IONIO-15 - HALLMENT'S MOLTHAURE, IN GOLDTHEER'S E MARCHENIX MARCOCCI. B - IONIO-15 - HALLMENT'S MOLTHAURE, IN GOLDTHEER'S MARCHENIX STATES AND MARCHENIX STATES. MANUACIONES - MAIL MOWARGE CONTINE - MARCHENIX STATES AND MARCHENIX STATES.							
pd-FVIII r-FVIII P value							
All studies	14.3%	27.4%	< 0.001				
Prospective studies							
All patients	9.1%	23.7%	< 0.001				
Severe HA, HR only	6.0%	19.4%	0.195				
HR, all patients	9.3%	17.4%	0.004				
HR, severe HA	9.0%	18.2%	0.009				
Non-transient, all patients	11.8%	19.8%	0.076				
Non-transient, severe HA	16.3%	25.8%	0.317				

Treatment-related fact switching between prod						
	Cumulat of all inh		Cumulat of high res			
	Means Mean in studies of studies		Means in studies	Mean of studies		
low / intermed. purity pdFVIII > 1 products	20,3 – 33%	25,9%	19,2–26,4%	21,9%		
low / intermed. purity pdFVIII only 1 products	0 – 12,4%	6,8%	0 – 2,5%	1,4%		
recombinant FVIII and 32 – 38% 33% 13 – 23% 16,9%						
*Wight J. Haemophilia 2003: 418-435						

Treatment-related factors:Inhibitor incidence according to VWF content at first treatment

			100 Park 100		
	r-FVIII products	pd-FVIII	Total		
	1-F VIII products	Low VWF	High VWF	Total	
No. of patients	181	33	102	316	
No. of all inhibitors	53 (29%)	5 (15%)	24 (24%)	82 (26%)	
No. of high titre inhibitors	43 (24%)	4 (12%)	19 (19%)	66 (21%)	
No. of switched product type	5 (3%)	14 (42%)	35 (34%)	54 (17%)	
prophylaxis within the first 50 ED	105 (58%)	23 (70%)	44 (43%)	172 (54%)	

 $\hfill\square$ Products with high VWF content had the same risk for inhibitor as r-FVIII

 $\ \square$ Switching between FVIII products did not increase the risk for inhibitors (RR=1.1)

*Gouw SC. Blood 2007: 4693-97.

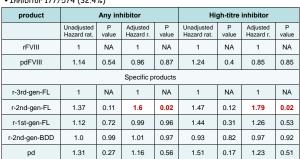
Freatment-related factors:Inhibitor incidence according to VWF content at first treatment

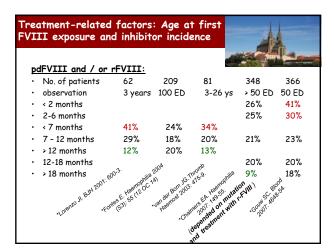
 $\ensuremath{\square}$ Products with high VWF content : the same risk for inhibitor as r-FVIII

Trends in evaluated groups - possible explanation? (speculation)

	r-FVIII	pd-FVIII ∳ VWF	pd-FVIII ↑ VWF
switched product type	3%	42%	34%
start prophylaxis within 50 EDs	58%	70%	43%
treatment on at least 3 consecutive days	71%	70%	91%

*Gouw SC. Blood 2007: 4693-97.


Can B-domain deletion alter the immunogenicity of recombinant factor VIII? A meta-analysis of prospective clinical studies L.M. ALECORT. F. J. IMAYCESTS and M. M. MICHESTS **Mount law clinic and deficious from the programment of the immunogenicity of manufactors for the immunogenic flower of programment of the immunogenic flower of the immunogenic flow


Factor VIII Products and Inhibitor Development in Severe Hemophilia A

• 2000-2010


*Gouw SC. N Engl J Med 2013; 368:231-9

• 574 PUPs for up 75 EDs • Inhibitor 177/574 (32.4%)

Treatment-related factors: Age at first FVIII exposure and inhibitor incidence

sHA, 62 PUP, observation median 7 year, pd-FVIII or r-FVIII
 Age at first FVIII exposure:

- 1- 6 months 10/50 = 20% - > 6 months 2/12 = 16,7%

* Santagostino E. BJH 2005: 422-27.

only r-FVIII productsAge at first FVIII exposure:

crude OR adjusted OR

11 months 2.8 3.3

11-16 months 1.7 2.5

> 16 months 1 1

Prophylaxis 0.2 0.2

Median of age at onset of prophylaxis was 35 months

Treatment-related factors: Age at first FVIII exposure and inhibitor incidence Age at first FVIII All inhibitors High-titre inhibitors proportion Crude RR Adjusted RR Crude RR Adjusted RR exposure < 2 months 2.7 1.6 2-6 months 30% 1.9 1.8 23% 1.3 1.3 18% 1.1 7-12 months 23% 1.5 1.1 12-18 months 20% 1.1 1.2 16% 1.0 1.0 >18 months 18% 1.0 1.0 16% 1.0 1.0 Treatment for bleed 23% 1.0 1.0 17% 1.0 1.0 22% 1.0 1.0 19% 1.1 1.2 prophylaxis 65% 3.7 2.6 59% 4.4 4.1 surgery ≥ 5 days 56% 3.3 3.1 53% 4.3 4.1

Treatment-related factors: Age at first 50 ED and inhibitor incidence *Gouw SC. Blood 2007: 4648-54. All inhibitors High-titre inhibitors Dose of 5 consecutive ED Crude RR Adjusted RR Crude RR Adjusted RR < 35 IU/kg 1.0 1.5 35 - 50 IU/kg 1.4 1.2 1.7 > 50 IU/kg Major surgery 1.4 1.3 1.3 1.2 2.0 1.6 2.3 1.9 Treatment ≥ 5 days Duration between ED 1.0 1.0 1.0 1.0 > 50 days 10 - 50 days 0.8 0.8 0.6 0.6 1.5 1.9 < 10 days 1.9 1.3 Regular prophylaxis

Despite late onset of prophylaxis: started at median age of 20 months and after 16 ED

Early prophylaxis/FVIII tolerization regimen

- <u>Start:</u>
 at median age of 10.7 months
- after minimum ED- median 1 ED
- based on subcutaneous haematomas not required FVIII substitution
 250 IU (25 35 IU /kg) once-weekly

	40 - 50 IU / kg 3x a week	25 - 35 IU / kg 1x a week		
N = 30		N = 40		
	Historical group	> 40 EDs		
Inhibitor	14 (47%)	1 (3,8%)		
High-responder	8 (27%)	0		

* Auerswald G.Haemophilia2012;18, e1-e41.

Treatment-related factors: Mode of administration - continuous infusion

- · Higher risk in mild and moderate haemophilia A
 - 10 patients developed inhibitors in Germany following CI
 - 7/10 had mild or moderate form of HA

*von Auer Ch, Ann N Y Acad Sci 2005: 498-505,

- 29 mild HA patinents in Toronto exposed to r-FVIII
 - 7x CI 4 developed inhibitors
 - 22 had bolus treatment non FVIII inhibitor
 *Sharathkumar A. J Thromb Haemast 2003: 1228-36.

- · Not confirmed in severe HA, less clear in mild and moderate HA:
 - Inhibitor of FVIII in non-severe HA 7.2% (6/83)
 - Development of inhibitor depends on high risk genotype:
 - < 50 ED except one patient
 - 5/6 high risk mutation: Arg593Cys
 - Inhibitor of FVIII in severe HA 0.45% (3/659)

*Batorova A, Haemophilia 2012; 18: 753-9

Treatment-related factors: Immunologic costimulation

- Breastfeeding

- · Protective effect was not proved
 - * Santagostino E. BJH 2005: 422-27.
 - *Knobe KE. Haemophilia 2002: 657-9.
- Antenatal FVIII exposure
 - · Amniocentesis, villocentesis, prematurity delivery Amniocentesis, vines...

 - No difference was found

 * Santagostino E. BJH 2005: 422-27.
- Infections, vacciations
 - · No assotiation with inhibitor risk
 - $\boldsymbol{\cdot}$ No data in the literatue despite the theoretical prersentation of danger signals
 - * Santagostino E. BJH 2005: 422-27.
 - *Astermark J. Haemophilia 2012;18Suppl.4):38-42

for severe be	ation for inhibitor development at first treatment imphilia A: a tool for clinical practice				
	Total number of patients		Observed inhibitors	1	Negative predictive value
Risk categories					
CANAL cohort					
Low (0 points)	95	8	6	0.06	0.68
Medium (2 points)	170	38	39	0.23	0.73
High (3 points or higher)	67	36	38	0.57	0.83
Validation cohort					
Low (0 points)	20	2	1	0.05	0.64
Medium (2 points)	28	6	8	0.29	0.75
High (3 points or higher)	16	8	8	0.50	0.81
Results are shown by leastient of the CANAL of develop an inhibitor, gory has a 94% (100–6% predictive value of 68% gory) in the medium or	cohort, in resulting (6) probabilis the pro-	the low risk in the fact t lity of not d obability the	category he that a patier developing a at a patient	as a probab nt in the lov n inhibitor. (outside th	wrisk cate A negative e low cate

_				
_				
_				
_				
_				
_				
_				
_				
_				

Haemophilia RIGINAL ARTICLE Inhibitori Non-genetic risk factors and the development of inhibitors in naemophilia: a comprehensive review and consensus report <u>Pregnancy</u>, delivery, breast feeding - no recommendations: No data indicating an association with inhibitor formation Age at start, reason for first infusion, prophylactic vs. on-demand treatment: Recommended prophylaxis for all children: - Might exert a favourable immunological effect to promote tolerance Young age at first ED in earlier studies as a risk factor later not confirmed: - Depend on FVIII mutation and intensity of treatment Vaccinations, infections, extravsc. inf., blood components, imunological disorders: Insufficient evidence to make recommendations, waiting for studies to be performed, EHTSB recommended: Vaccination preferentially s.c. avoiding concomitant infusion of factor - Replacement therapy should be avoided in severe infection

ORIGINAL ARTE	CLE II	BETSEALDOFS	
Non-genetic	risk	factor	s
haemonhilia		omne	h

s and the development of inhibitors in hensive review and consensus report STERMARK, * C. ALTISENT, † A. BATOROVA, † M. J. DINIZ, Ş A. GRÜNGERLI, F , A. HOLME, Carafoulidou, † M. F. Lopez-fernandez, † † B. M. Beipert, † Ş A. Rocino, † † Cchiavon, † * M. von defra, † † † yirdygat † sak. Finvandraatss on behat The European Haemophila, Therap * Strandradstaton board (het/sb)

Intensity of treatment, surgery, major bleeds and CI vs. bolus infusion:

- Recommendation to minimize intensive treatment whenever possible to avoid association with immune system challenges
- Not support the concept that CI in patients with severe haemophilia is associated with higher risk of inhibitor

Factor concentrates - EHTSB concluded that:

- In PTPs there is no evidence to suggest that the immunogenicity of various types of product will differ or switching between them will be associated with a risk of inhibitor
- In PUPs whether the type of concentrate has the ability to modulate the risk of inhibitor in a significant way and thereby establishing implications for the use of different factor concentrates will require well-designed,

What to do to decrease incidence of (FVIII) inhibitor?

Risk of FVIII inhibitor could be increased by:

- Treatment intensity (high dose, > 5 days, surgery):
 - At first exposure, probably during 20-40 Eds: postpone surgery
 - Continuous infusion: do only in severe form
- It seems true only in mild/moderate haemophilia A: use DDAVP in mild HA
- Dangerous signal: avoid factor administration
- FVIII infusion during infection, vaccination, first treatment for bleeding

Not clear if it could be negatively influenced:

- By type of FVIII concentrate: no clear recommendation · Recombinant have been monitored in more details
- In an independent way by early FVIII exposure: prefered > 6-12 months
- By switching of FVIII products: not to switch FVIII concentrates

Risk of FVIII inhibitor is probably decreased by:

- Prophylactic treatment:
 - Start before the first bleeding
 - In high risk (mutation, iFVIII in family)
 - Low dose 25-35 IU/kg a week

1	C
T	O

